Maternal group A streptococcal infections

Shiranee Sriskandan Imperial College London

Cellulitis Pneumonia Bacteremia Necrotising Peripartum Toxic shock fasciitis sepsis STSS

- Maternal invasive Group A Streptococcal (iGAS) infection
 - Context
 - Pathophysiology (microbiology, immunology)
 - Recognition & management (antibiotics, IVIG)
 - Preventing nosocomial maternal GAS

Saving Mothers' Lives:

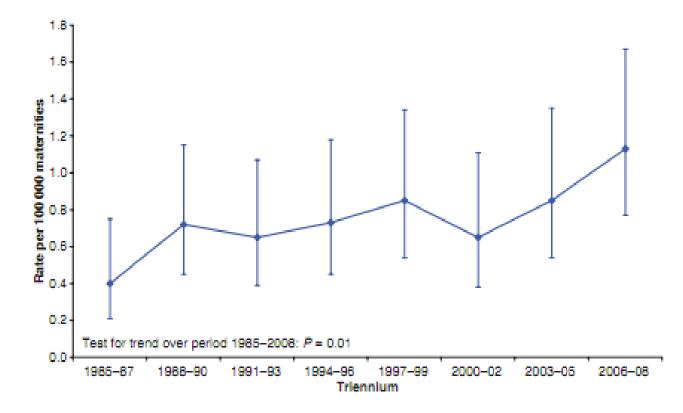
Reviewing maternal deaths to make motherhood safer - 2003-2005

"...Sepsis has become the leading cause of Direct maternal deaths in the UK since Confidential Enquiries into Maternal Deaths commenced in 1952"

Linked with increase in Group A Streptococcal infections

Centre for Maternal and Child Enquiries Improving the health of mothers, babies and children

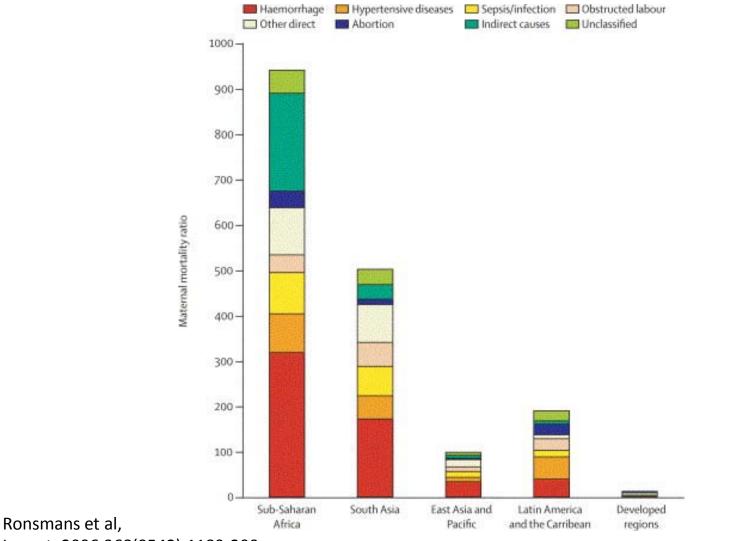
CMACE EMERGENT THEME BRIEFING #1: Genital Tract Sepsis September 2010


SAVING MOTHERS' LIVES 2006-08: Briefing on genital tract sepsis

During the 2006 – 2008 triennium, sepsis was the leading cause of direct maternal deaths, accounting for 26 direct deaths and a further 3 deaths classified as 'Late Direct''. Whilst maternal mortality is declining overall, maternal deaths due to sepsis have risen in recent triennia, particularly those associated with Gp A streptococcal infection (GAS):

	2000-2002	2003-2005	2006-2008
Rate / 100,000 maternities	0.65	0.85	1.13
Numbers* (all organisms)	13	21	29
Numbers* (GAS)	3	8	13

*: Direct and indirect maternal deaths together


The current increase in maternal deaths due to sepsis in the UK

Source: CMACE. Saving Mothers' Lives: reviewing maternal

deaths to make motherhood safer: 2006–08. The Eighth Report on Confidential Enquiries into Maternal Deaths in the United Kingdom. BJOG 2011;118(Suppl. 1):1–203.

Peripartum sepsis: the international context

Lancet. 2006;368(9542):1189-200

Microbiological context

Severe maternal sepsis/deaths

Staphylococcus aureus	10-15%
Strep pneumoniae	2-5%
Clostridium spp.	2-5%

E. coli	20-30%
Pseudomonas	2-10%
Klebsiella spp	2-5%
Acinetobacter etc	2-5%

Bacteremia

Group B streptococcus Group A streptococcus E.coli, S. aureus, Listeria

Endometritis

Gram positive

Groups A, B, D streptococci Staphylococcus aureus

Gram negative

Escherichia coli, Enterobacteriaceae Citrobacter, Pseudomonas aeruginosa, Proteus mirabilis Haemophilus, Gardenerella vaginalis

Anaerobes

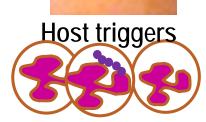
Peptostreptococcus sp.,Bacteroides Clostridium spp, Fusobacterium

Miscellaneous

Chlamydia trachomatis Mycoplasma hominis Ureaplasma urealyticum

Excess risk of iGAS in peripartum women

- USA Deutscher et al Clin Infect Dis. 2011;53:114-23 . Postpartum women have specific x20-fold risk of GAS and GBS bacteremia .
- **E&W**: 52 cases of severe iGAS in postpartum women in 2009
- Overall risk >120 times higher in 28d postpartum period (and >28 times higher if genital infection is excluded) compared to 15-44y women who had not recently delivered a child. (Lamagni et al, XVIII Lancefield Symposium, 2011, Palermo.)
- Reasons for excess risk unknown
 - Contact with young children
 - Sore throat in self/near family
 - ?GAS-specific immunological defect
 - Unlikely due to antenatal carriage


Does antenatal carriage of GAS lead to post natal sepsis? Colebrook's 1933-4 study

Incidence of puerperal sepsis approx 30 per 1000 births

Looking for a GAS-specific immunological defect in pregnancy and puerperium

Mucosae: GAS resistance to antimicrobial peptides, complement

Host antibody

GAS repressor systems switched OFF/mutate

GAS adhesion,

Biofilm

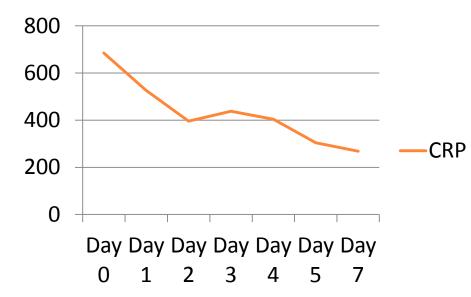
GAS Virulence genes de-repressed Eg Capsule; SpyCEP (chemokine cleavage)

GAS invasive infection

Toxic shock

Case

- 39 year old primagravid, caucasian
- Presented to local emergency dept
- Flu-like illness, diarrhoea 36h
- NVD healthy infant 6d earlier
- Clinical signs of severe sepsis
 HR 130, RR32, BP 86/50; mottling of skin
- Investigations
 - Hb 14.5, plt <u>94</u>, wcc 6.2; CRP <u>685</u>; PT <u>15.2</u>, APTT 39.6


Management

- As for severe sepsis (surviving sepsis guidance)
- Early goal-directed therapy; ICU
- Antibiotics for community-acq sepsis of unknown cause (ceftriaxone)
- PT 15.2 17 18.9
- APTT 39.6 43.6 -51
- Increasing hypoxia
- Increasing pain L foot

Progress on ICU

- Severe sepsis -DIC, shock
- MRI L. foot : nec. fasciitis
- Clindamycin added
- Further deterioration
- Transferred to 2nd ICU with obstetric and plastic surgery units on site
- Eventual recovery after debridements

Microbiology

- HVS (d1) HVS (d2)
- Blood (d1)

- 3+ Group A strep
- 2+ Group A strep
- No growth

? Genital tract as portal of entry

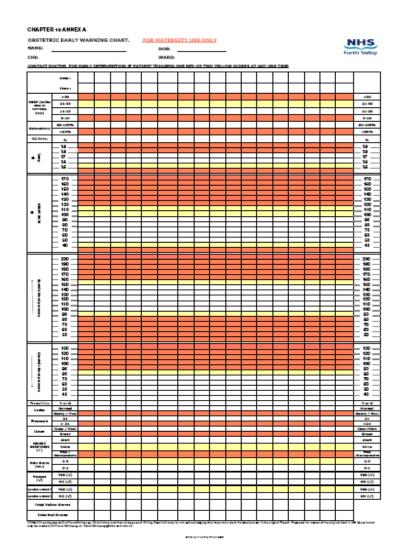
Foci of peripartum iGAS infection

Focus	No.	(%)	
Doctoromio wit	hout focus	10 (AC)	
Bacteremia wit	nout locus	40 (46)	
Endometritis		24 (28)	
Peritonitis		7 (8)	
Septic abortion	I	6 (7)	
Cellulitis		3 (3)	
Septic arthritis		3 (3)	
Necrotizing fasciitis		3 (3)	
Strept toxic sho	ock	3 (3)	
Chorioamnioni	tis	3 (3)	
Pneumonia		1 (1)	
Abscesses		0 (0)	
Others*		3 (3)	
*Meningitis, thrombophlebitis, and septic emboli.			

USA (Chuang et al. Clin Infect Dis. 2002; 35:665-70)

Recognition of peripartum GAS sepsis

SIGNS


- Pyrexia OR Hypothermia
- Tachycardia
- Tachypnoea (RR>20)
- Diarrhoea
- Pain (variable degree- opiate req.)
- (Vaginal discharge/abnormal lochia)

THINK of possibilityNot all postpartum sepsis is genital tractMay present to any teamAny other focus?

TESTS

- Leucopenia
- Raised CRP
- Raised lactate/low pH
 - Thrombocytopenia
 - Coagulopathy

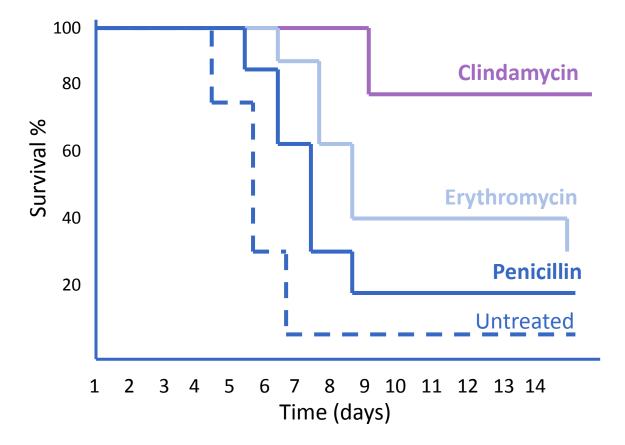
Recognition of illness severity

MEOWS charts: Who should use them?

Community? A&E depts

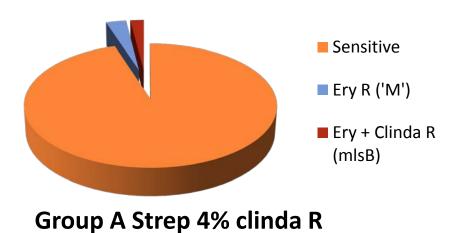
Must be linked to clear action plans when patients trigger

If a maternity patient is not improving (heart rate, lactate, blood pressure, pain) then she is inadequately resuscitated and may need intervention ?surgical ?adequate level of care and hydration ?choice of antibiotics


Empiric management of peripartum infection

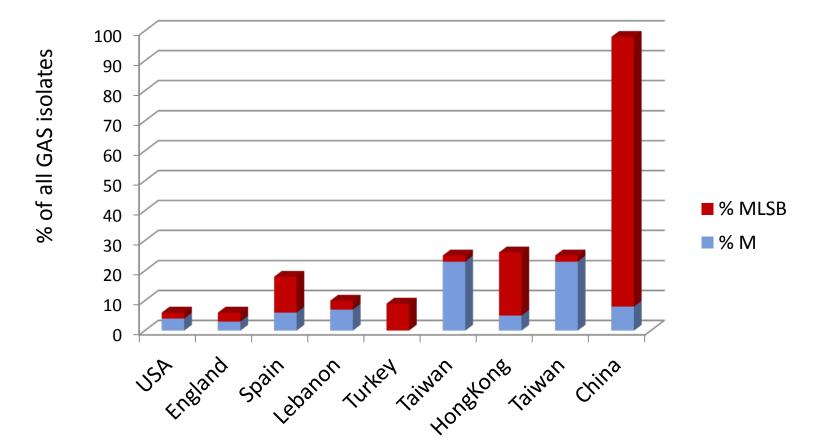
- Antibiotics as early as possible (<1h) i.v. full dose
 - MODERATE Co-amoxiclav (plus metronidazole)
 - OR Cefuroxime (plus metronidazole)
 - OR if ESBL risk
 Carbapenem
 - SEVERE: Piperacillin/Tazobactam/gent or Carbapenem CLINDAMYCIN, IVIG if group A strep likely (cover MRSA if screening +ve)
- Cultures beforehand (blood), also HVS, throat, urine
- RCOG guidelines 2012

- Refine antibiotics once culture results known
- Source control, repeat imaging if swinging pyrexia
- Supportive care fluids (cvp, catheter), oxygen, ICU- Rpt physiology and bloods
- Infection control- side room (nb iGAS is notifiable in UK)


Rationale for use of clindamycin: toxin inhibition and enhancement of bacterial clearance

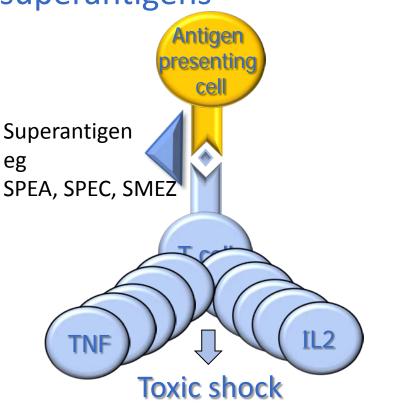
Data: in vivo (MOUSE) models of iGAS SSTI but no RCT

Adapted from: Stevens DL, J. Infect Dis.1993 Jun;167(6):1401-5.

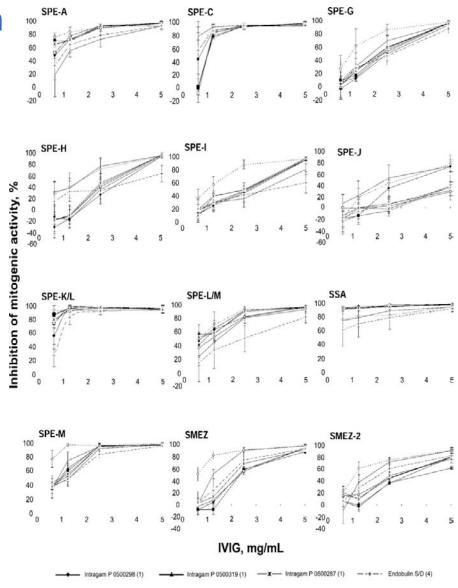

Macrolide and lincosamide resistance UK...

2010: England, Wales, N. Ireland Health Protection Report Vol. 5 No. 46 – 18 November 2011

But may be problematic elsewhere



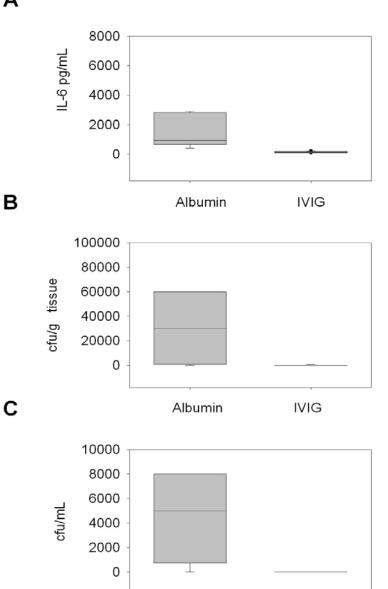
Extracted from individual published studies 2008-2011 Specific Emm types associated with emergence of MLSB phenotype eg emm12 and 22 in China


Intravenous Immunoglobulin (IVIG)

- Purified IgG from pooled donors
- Screened for HIV, HBV and HCV
 - Concerns about risks of Prion disease transmission-supply
- >97% monomeric lgG
- Products vary between manufacturers
 - Variety of (rare) adverse side effects
 - IgA and IgM content (Pentaglobin 12% IgM)

Rationale for IVIG. Bacterial opsonisation AND in vitro neutralisation of GAS superantigens


tragam P 0600276 (1)


ntragam P 0600308

Intragam P 0600338 (3)

Vigam-S (4

In GAS-infected superantigen-sensitive HLA-transgenic mice, polyclonal IVIG can reduce systemic inflammation and bacterial load in spleen and blood

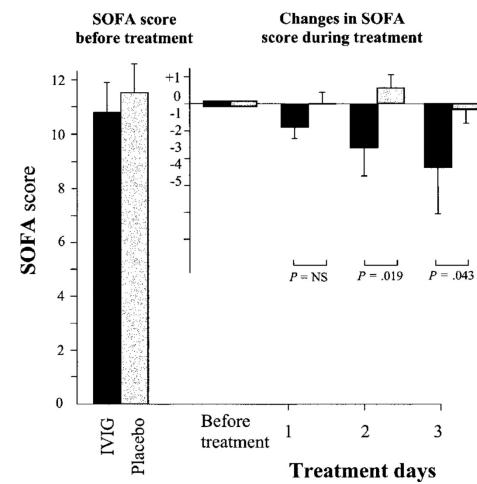
Albumin

IVIG

Α

Clinical trial of IVIG in STSS

Primary and secondary end points assessing efficacy of administration of highdose intravenous polyspecific IgG. Trial stopped due to low recruitment.


	All included patients		Patients with GAS only	
End point	IVIG group $(n = 10)$	Placebo group $(n = 11)$	IVIG group $(n = 8)$	Placebo group $(n = 10)$
Primary: mortality day 28, no. (%) of patients	1 (10)	4 (36)	1 (12.5)	3 (30)
Secondary				
Time to resolution of shock, ^a h				
Mean	88	122	100	122
Median (range)	96 (2–159)	108 (47–294)	108 (2–159)	108 (47–294)
Time to no further progression of NF/cellulitis, h				
Mean	68 ^b	36°	69 [°]	36°
Median (range)	20 (2–168) ^b	24 (19–72)°	20 (2–168) ^c	24 (19–72) [°]
Mortality day 180, no. (%) of patients	2 (20)	4 (36)	1 (12.5)	3 (30)

NOTE. GAS, group A streptococci; IVIG, intravenous IgG; NF, necrotizing fasciitis.

- ^a In the survivors.
- ^b Seven patients.
- ^c Five patients.

Darenberg J et al. Clin Infect Dis. 2003;37:333-340

Initial Sepsis-related Organ Failure Assessment (SOFA) scores and changes during treatment in polyspecific intravenous IgG (IVIG)— and placebo-treated patients.

Immunoglobulin is authorised for use in iGAS but only when failing 1st line treatment in UK

Diagnosis	n	Volume used (g)	Average dose (g/patient)
Severe invasive group A streptococcal disease	31	4451	144
Necrotising (PVL-associated) staphylococcal sepsis	20	2673	134
Severe or recurrent <i>Clostridium difficile</i> colitis	67	2297	34
Staphylococcal toxic shock syndrome	11	1388	126
Toxin-related infection in paediatric intensive care	19	719	38
Sepsis in the intensive care unit not related to specific toxins or <i>Clostridium difficile</i>	3	384	128
Neonatal sepsis (prevention or treatment)	2	10	5
Other (Infectious diseases)	31	4096	132
Total	184	16,018	

Immunoglobulin database, 2010, UK Dept Health

Preventing transmission of iGAS in maternity settings

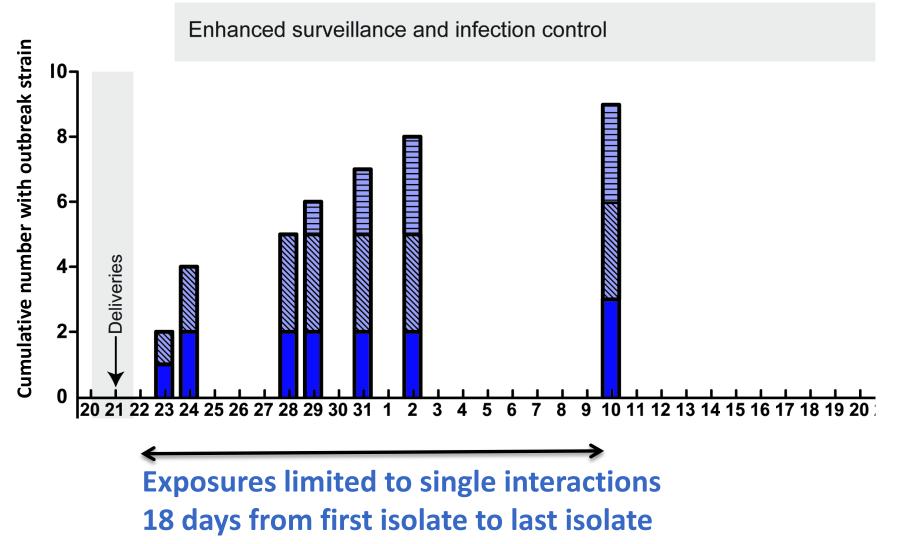
Cluster of GAS infection

Case 1 -

- Delivered baby 1.10 am
- 21/12/07
- Died 23/12/07

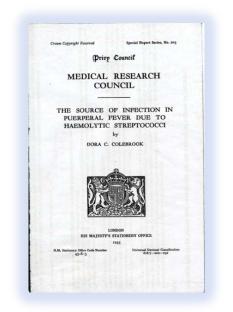
Blood Culture Group A Streptococcus M1

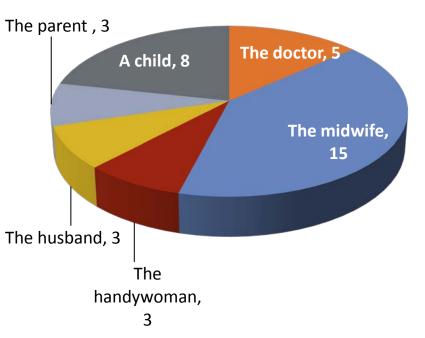
Post mortem HVS and Cervical swab Group A Streptococcus M1


Case 2 -

- Delivered baby 1.08 am same unit
- 21/12/07
- Died 24/12/07

Post mortem ENT swab Group A Streptococcus M1

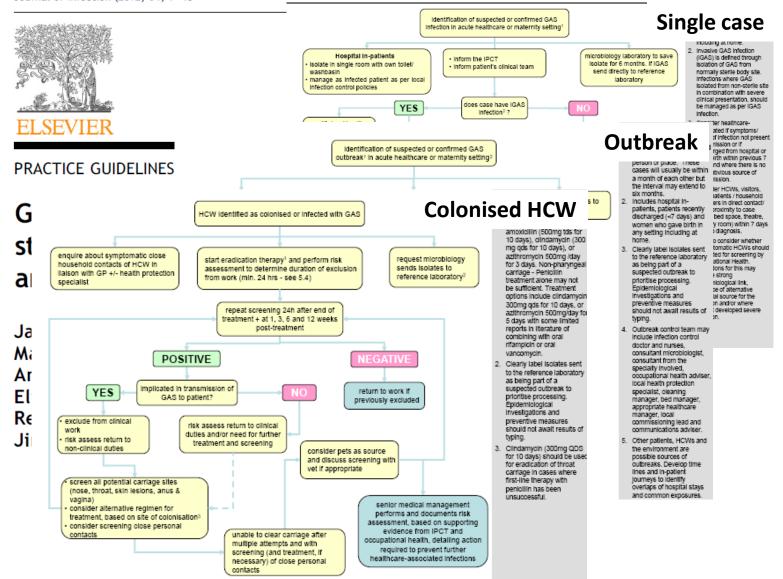

Post mortem uterine swab and L+R Lung Group A Streptococcus M1


GAS can spread rapidly- preventing transmission requires speed

The importance of intense and immediate surveillance 3 househ Immediate treatment cic Intense surveillance Environment, Patients, staff 3 healthca (3/69 =4% Not in 200 control HCWs 2 maternal deaths Confirmed by SOLEXA whole genc

sequencing

1935 Recommendations (Dora Colebrook)

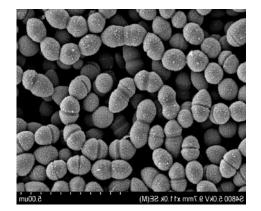

•Symptomatic URTI should be kept away from women in the puerperium

•Prophylactic measures-scrupulous hygiene incl disinfectants and masks

•Investigate every case and exclude those affected (frequent nosocomial spread)

•Estimated that 576 of 900 deaths per year were preventable

Journal of Infection (2012) 64, 1-18



- Managing severe invasive GAS (peripartum sepsis)
 - If severe sepsis, likely to be GAS- prompt action
 - Not always genital tract sepsis
 - Use of clindamycin but beware resistance
 - Consider pooled intravenous immunoglobulin
 - No RCTs but plausible mode of action
 - Prompt strategies to prevent nosocomial spread and be concerned about even a single case

Acknowledgements

- Claire Turner
- Frances Davies

- Matthew Dryden, Royal Hampshire County Hospital
- Matt Holden, WT Sanger Institute
- Androulla Efstratiou, HPA
- Theresa Lamagni, HPA
- Joe Kearney, HPA & Working Party Guideline group
- UK CRC Centre for Infection Prevention and Management, Imperial College London