Respiratory Failure in Pregnancy

Stephen E. Lapinsky

Mount Sinai Hospital Toronto, Canada

Disclosure

No conflicts of interestOff-label use of pharmaceutical agents

Outline

Respiratory physiology in pregnancy

Respiratory failure in pregnancy

- Incidence
- Etiology
- Managmenent

Blood gases in late pregnancy

рН	7.43		
PaCO ₂	30	mmHg	- hyperventilation
PaO ₂	105	mmHg	- normal a-A gradien
HCO ₃ ⁻	20	mEq/L	- renal compensation

Decreased oxygen reserve

- reduced FRC
- increase O₂ consumption

Cause of death	eath 2000–02		2003-05			2006-08			
	n	Rate	95% CI	n	Rate	95 % CI	n	Rate	95 % CI
Direct deaths									
Sepsis*	13	0.65	0.38-1.12	18	0.85	0.54-1.35	26	1.13	0.77-1.67
Pre-eclampsia and eclampsia	14	0.70	0.42-1.18	18	0.85	0.54-1.35	19	0.83	0.53-1.30
Thrombosis and thromboembolism	30	1.50	1.05-2.15	41	1.94	1.43-2.63	18	0.79	0.49-1.25
Amniotic fluid embolism	5	0.25	0.10-0.60	17	0.80	0.50-1.29	13	0.57	0.33-0.98
Early pregnancy deaths	15	0.75	0.45-1.25	14	0.66	0.39-1.12	11	0.48	0.27-0.87
Ectopic	11	0.55	0.30-0.99	10	0.47	0.25-0.88	6	0.26	0.12-0.58
Spontaneous miscarriage	1	0.05	0.01-0.36	1	0.05	0.01-0.34	5	0.22	0.09-0.52
Legal termination	3	0.15	0.05-0.47	2	0.09	0.02-0.38	0	0.00	
Other	0	0.00		1	0.05	0.01-0.34	0	0.00	
Haemorrhage	17	0.85	0.53-1.37	14	0.66	0.39-1.12	9	0.39	0.20-0.75
Anaesthesia	6	0.30	0.13-0.67	6	0.28	0.13-0.63	7	0.31	0.15-0.64
Other Direct	8	0.40	0.20-0.80	4	0.19	0.07-0.50	4	0.17	0.07-0.47
Genital tract trauma	1	0.05	0.01-0.36	3	0.14	0.05-0.44	0	0.00	
Fatty liver	3	0.15	0.05-0.47	1	0.05	0.01-0.34	3	0.13	0.04-0.41
Other causes	4	0.20	0.08-0.53	0	0.00		1	0.04	0.01-0.31
All Direct	106	5.31	4.39-6.42	132	6.24	5.26-7.41	107	4.67	3.86-5.64
Indirect									
Cardiac disease	44	2.20	1.64-2.96	48	2.27	1.71-3.01	53	2.31	1.77-3.03
Other Indirect causes	50	2.50	1.90-3.30	50	2.37	1.79-3.12	49	2.14	1.62-2.83
Indirect neurological conditions	40	2.00	1.47-2.73	37	1.75	1.27-2.42	36	1.57	1.13-2.18
Psychiatric causes	16	0.80	0.49-1.31	18	0.85	0.54-1.35	13	0.57	0.33-0.98
Indirect malignancies	5	0.25	0.10-0.60	10	0.47	0.25-0.88	3	0.13	0.04-0.41
All Indirect	155	7.76	6.63-9.08	163	7.71	6.61-8.99	154	6.72	5.74-7.87
Coincidental	36	1.80	1.30-2.50	55	2.60	2.00-3.39	50	2.18	1.65-2.88
Late deaths									
Direct	4			11			9		
Indirect	45			71			24		

Table 4 Characteristics of included studies according to country level of development					
Characteristic $(N = 41)^a$	Developing ^b $(n = 16)$	Developed ^b $(n = 25)$	p value		
Study duration (years), mean \pm SD	5.4 ± 2.9	7.4 ± 3.6	0.06		
Participants	73 (30-1,902)	65 (18-754)	0.81		
Deliveries during study period	28,209 (5,764-822,591)	24.347 (2.224-82.623)	0.92		
Incidence of ICU admission during study period	2.7 (1.3-13.5)	3.0 (0.7-8.8)	0.52		
Maternal deaths (%)	14.0 (0.0-40.0)	$3.4(0.0-18.4)^{\circ}$	0.002		
Overall proportion of ICU admissions (%)	2.4 (0.5-16.0)	1.5 (0.4–12.0)	0.38		
Received mechanical ventilation (%)	41.0 (3.0-100.0)	41.5 (13.0-76.0)	0.60		
Hypertensive disease of pregnancy (%)	39.8 (10.0-74.0)	32.5 (13.0-88.0)	0.93		
Hypertensive disease of pregnancy (per 1,000 deliveries)	1.1 (0.2-6.7)	0.9 (0.2-4.7)	0.75		
Obstetric haemorrhage (%)	25.0 (8.5-53.0)	21.5 (5.0-46.5)	0.85		
Obstetric haemorrhage (per 1,000 deliveries)	0.8 (0.4–1.8)	0.6 (0.1-2.3)	0.27		
Sepsis/infection (%)	5.0 (0.0-17.0)	4.8 (0.0-24.0)	0.85		
Sepsis/infection (per 1,000 deliveries)	0.2(0.0-2.3)	0.1(0.0-0.9)	0.62		
Other direct obstetric complications (%)	4.5 (0.0-30.0)	5.8 (0.0-55.0)	0.31		
Other direct obstetric complications (per 1,000 deliveries)	0.1(0.0-1.6)	0.2(0.0-3.4)	0.95		
Non-obstetric diagnoses (%)	21.5 (6.5-43.0)	25.8 (0.0-47.0)	0.92		
Non-obstetric diagnoses (per 1,000 deliveries)	0.9(0.2-2.2)	0.7(0.0-3.0)	0.99		
Anaesthetic complications (%)	0.3 (0.0-26.0)	0.0(0.0-22.0)	0.83		
Anaesthetic complications (per 1,000 deliveries)	0.0 (0.0-0.5)	0.0 (0.0-0.6)	0.71		

Pollock et al, Int Care Med 2010, 36:1465

>About 1-2 per 1,000 deliveries

Account for about 1% of ICU admissions

Vast majority ICU admissions postpartum

- 90% postpartum
- 10% during pregnancy

Pregnancy - specific

Aggravated by pregnancy

Non - specific

Pregnancy - specific

Preeclampsia (pulmonary edema)
Amniotic fluid embolism
Tocolytic pulmonary edema
Septic ARDS (chorioamnionitis)
Trophoblastic embolism
Fetal intrauterine surgery

> Aggravated t

> Non - specifi

Gastric acid aspiration
Venous thromboembolism
Pyelonephritis (producing ARDS)
Sepsis
Air embolism
Pneumonia (varicella, others)
Connective tissue disease
Cardiac failure

Pregnancy - specific

Aggravated by pregnancy

> Non - specific

Causes of Respiratory Failure

Causes of Respiratory Failure

➢Pneumonia:

- Usual pneumonias occur, no change in incidence
- Complications more common
- Also:
 - Influenza
 - Varicella
 - HIV associated
 - Tuberculosis

Causes of Respiratory Failure

➢Pneumonia:

- Management
 - do NOT avoid chest x-rays
 - avoid tetracyclines & quinolones, if possible
 - VZIG and acyclovir
 - Tamiflu (oseltamivir)
 - TB: INH, rifampin, ethambutol PZA (recommended by WHO) delay Rx of latent TB

Influenza in Pregnancy

Increased risk of severe disease

7 – 9% of ICU patients (1% of population)

Major risks to fetus

Fever
Hypoxemia

Management

Oseltamivir
Optimize oxygenation

Cystic fibrosis

 low risk with stable disease
 avoid pregnancy if (?) FVC < 50% pulmonary hypertension

increased perinatal mortality

 Management: nutrition antibiotics counseling

Other Chronic Lung diseases

- eg. bronchiectasis, neuromuscular disease, restrictive lung disease
- little data
- Some may deteriorate (LAM, SLE)
- increasingly common request
- multidisciplinary team management

Case series: restrictive lung disease in 15 pregnancies

Lapinsky et al, Chest. 2014 Feb;145(2):394-8

Lung function tests during pregnancy

Timing of Spirometry in pregnancy

Lapinsky et al, Chest. 2014 Feb;145(2):394-8

Restrictive disease: Respiratory support

Delivery - mode

Restrictive disease in pregnancy

- Women with severe restrictive lung disease tolerate pregnancy reasonably well
- Careful monitoring & planning:
 - Oxygenation requirements
 - Small risk of ventilatory failure
 - Labour and delivery:
 - Timing
 - Potental difficulty with:
 - neuraxial anesthesia
 - airway management

Pregnancy-specific conditions

Amniotic Fluid Embolism

Rare: 1/8,000 to 1/80,000
 Catastrophic: mortality 10 - 86%

Presentation: cardiorespiratory collapse fetal distress cardiac arrest, seizures

Late effects: ARDS & DIC

Amniotic Fluid Embolism

> Hemodynamics:

pulmonary hypertension & biventricular dysfunction

Diagnosis:

- Usually diagnosis of exclusion
- Not yet adequately validated:
 - Tryptase
 - Fetal squames and debris in pulmonary capillaries
 - Complement levels
 - Zinc coproporphyrin
 - Sialyl Tn antigen
 - C1 esterase inhibitor Tamura N, et al Crit Care Med. 2014;42:1392-6

Amniotic Fluid Embolism

Management:

- Supportive ventilation
 - fluid, inotropes
 - Rx DIC
- Deliver fetus
- Steroids ?
 - based on similarity with anaphylactic reaction
 - no supporting data

ARDS in pregnancy

Important cause of maternal death
Pregnant women appear very susceptible:

Reduced serum albumin
Increased blood volume
Upregulation of components of the inflammatory response

Smith, et al. West J Med 1990, 153:508 Catanzarite, Obstet Gynecol Survey 1997, 52:381 Sheng et al. Crit Care Med. 2012 May;40(5):1570-7

ARDS in pregnancy

pre-eclampsia
obstetric sepsis
amniotic fluid embolism
aspiration
major hemorrhage
placental abruption

Smith, et al. West J Med 1990, 153:508 Catanzarite, Obstet Gynecol Survey 1997, 52:381

Respiratory failure in pregnancy

Management

Respiratory failure in pregnancy

ICU Management

- Prepare the ICU !
- Non-invasive ventilation
- Intubation
- Conventional mechanical ventilation
- Non-conventional modes
- Other management issues
- Role of delivery

Respiratory failure in pregnancy

➢ Prepare the ICU:

- Drugs: oxytocin, Hemabate, ergotamine
- Blood compat: send q4 days
- Equipment: Vaginal delivery Caesarean delivery Neonatal resuscitation

- Decisions: fetal resuscitation status
- Contact details: OB, anesthesia, neonatology

Non-invasive Ventilation

>Advantages

avoids the upper airway avoids sedation

≻Concerns

- nasal congestion
- reduced lower esophageal sphincter tone
- aspiration

Non-invasive Ventilation - Role

Acute respiratory failure

- Pulmonary edema (preeclampsia, cardiogenic)
- Other (eg. asthma, pneumonia)

Chronic respiratory failure

- Neuromuscular disease
- Kyphoscoliosis
- Bronchiectasis

Bach. Am J Phys Med Rehabil 2003; 82:226

Endotracheal intubation in pregnancy

Failed intubation 8x more common than non-pregnant patient

Affected by anatomical changes aspiration risk weight gain reduced oxygen reserve preeclampsia

Munnur et al, Crit Care Med, 2005, 33:S259

TIME TO HEMOGLOBIN DESATURATION WITH INITIAL $F_AO_2 = 0.87$

Benumof et al, Anesthesiology 1997; 8:979 Baraka et al, Anesth Analg 1992; 75:757

Conventional Ventilation

Oxygenation optimize: PaO₂ > 90 mmHg ?

Ventilation
 normal PaCO₂ 30 mmHg
 permissive hypercapnia ?
 avoid alkalosis

Pressure

- respiratory system compliance
- adequate PEEP

Blood Gas Targets in Pregnancy

Blood Gas Targets in Pregnancy

As with any organ, oxygen delivery is determined by:

-Oxygen saturation -Hemoglobin -Cardiac output

Oxygen Targets in Pregnancy

Modelling based on animal data: Maternal Sat 96% to 85% will result in fetal: 70% to 55% Meschia, Clin Chest Med 2011;32:15

Maternal hypoxemia (10% O₂): no adverse effect on fetal monitoring Polvi et al. Obstet Gynecol. 1995;86:795

Winnipeg H1N1 experience: 6 pregnant women, initial sats 50 – 88%: 4/6 marked ischemic encephalopathy (but likely numerous confounding factors)

Oluyomi-Obi et al. J Obstet Gynaecol Can 2010;32:443

CO₂ Targets in Pregnancy

- Over ventilation reduces uterine blood flow
 - effects of positive pressure on cardiac output
 - effects of resp alkalosis on UBF Levinson et al. Anesthesiology. 1974;40:340-7

• Low maternal PaCO₂ is associated with fetal hypoxia and acidosis, due to reduced uterine blood flow

Group	Maternal	Fetal	APGAR
hyperventilated	pH 7.5 PCO ₂ 23	pH 7.34 PO ₂ 23	6.9
hypoventilated	pH 7.36 PCO ₂ 39	pH 7.29 PO ₂ 29	8.4

Peng et al, Br J Anaesth 1972, 44:1173

CO₂ Targets in Pregnancy

Permissive hypercapnia

- Very limited data
- Produces fetal acidemia secondary to maternal acidemia, but NOT fetal hypoxemia
- Maternal PaCO₂ of 52 mmHg well tolerated

Bicarbonate therapy

Crosses the placenta in humans (more so than in animal models)

Hollmen, Acta Anaesth Scan 1972, 221 Ivankovic et al, Am J Obstet Gynecol 1970

Less Conventional Ventilation

Prone positioning
 no data on maternal or fetal effects

Nitric oxide
 little data, case reports in Pulm HTN

≻HFO

Recent experience during H1N1

➤ ECMO

Significant experience during H1N1

Nair, et al. Intensive Care Med. 2011;37:648-54

Risks of an ICU stay to the fetus

Risks of an ICU stay to the fetus

Review of 93 pregnant women admitted to ICU (Mayo Clinic 1995 - 2005)

Fetal loss

- 1st trimester: 65% spontaneous abortion
- 2nd trimester: 43% fetal loss
- 3rd trimester: 5% fetal loss

Risk factors for fetal loss:

- Maternal shock
- Maternal transfusion
- Lower gestational age

Cartin-Ceba et al, Crit Care Med 2008; 38:2746

Risks of an ICU stay to the fetus

Other potential risks:

- Maternal hypoxia
- Maternal hypotension
- Radiation exposure
- Maternal fever
- Drug therapy
- Maternal cardiac arrest

H1N1 Winnipeg experience: 6 women with severe H1N1

Table 2. Maternal clinical management	and outcome, n (%)
Need for vasopressors	
Yes	4 (67)
No	2 (33)
Use of hemodialysis	
Yes	2 (33)
Tamiflu	6 (100)
Maternal outcomes	
Death	2 (33)
Survival	4 (67)
latrogenic medical complications	2 (33)

Oluyomi-Obi et al. JOGC 2010;32(5):443–447

Table 3. Obstetrical and neonatal management and outcome

Obstetric status and outcome		
Gestational age at end of pregnancy (n = 6), weeks	n (%)	
≤14	1 (16.7)	
15–28	1 (16.7)	
≥29	4 (66.6)	
Antenatal complications (n = 6)	n (%)	
Gestational hypertension	1 (16.5)	
PPROM	1 (16.5)	
Preterm labour	1 (16.5)	
Pregnancy outcome (n = 6)	n (%)	
SA	1 (16.7)	
Live birth	4* (66.6)	
Stillbirth	1 (16.7)	
Mode of delivery (n = 5)	n (%)	
SVD	2 (40)	
CS	3 (60)	
NICU admissions	3 (60)	
Length of NICU admission, days,		
Survivors (2)	mean 23.5	
Non-survivors (1)	2	
Neonatal outcomes (n = 4)	n (%)	
Death	1 (25)	
Survival	3 (75)	
Without sequelae of HIE	2 (50)	
With sequelae of HIE	1 (25)	
Evidence of HIE on investigation	2†	

Sedation & NM blockade

- No completely "safe" drugs
- > Opiates: most OK
- Benzodiazepines: cross placenta, potential problems. We use midazolam, if needed
- Propofol: short term OK? Propofol syndrome in mother and fetus?

Hilton. J Neurosurg Anesthesiol. 2007;19:67-8

- Neuromuscular blockers: cross placenta
- Delivery: warn the neonatologist!

How do we ventilate in pregnancy?

Is delivery beneficial to the mother?

Retrospective review

➢ 4 ICUs, 2004 − 2014

29 patients, ventilated while pregnant, >24 hr: Age (yr) 29.0 (±7.7) Gestation at admission (wk) 25.4 (±6.0)

Indication for ICU admission

Ventilation during pregnancy

Ventilation

Ventilation durat	ion (days)	6.0 (± 8.2)
Highest PEEP	(cmH ₂ O)	10.9 (± 4.4)
Highest Plateau	pressure (cmH ₂ O)	27.3 (± 6.5)

	Day 1	<u>Day 2</u>
Tidal volume		
actual (ml)	446 (± 90)	452 (± 102)
by PBW (ml/kg)	7.9 (± 1.5)	8.1 (± 1.7)
Compliance (ml/cmH ₂ O)	21.4 (± 9.2)	22.8 (± 8.6)

Distribution of worst blood gases in first 48 hr

Number of patients

Effect of Delivery

Effects of Delivery (n=10)

Delivery of the fetus

Given the physiological changes, it may be considered that delivery of the pregnant women with respiratory failure is beneficial to the mother

Delivery of the fetus

Given the physiological changes, it may be considered that delivery of the pregnant women with respiratory failure is beneficial to the mother

\succ NOT always the case:

- Some oxygenation improvement
- Some change in compliance or PEEP requirement

Tomlinson MW, et al. Obstet Gynecol. 1998; 91:108-11. Mabie WC, et al. Am J Obstet Gynecol 1992; 167:950-7 Lapinsky, et al. Int J Obstet Anesth 2015; 24:323

Delivery of the fetus

Given the physiological changes, it may be

> Delivery:

Tomlinson MW, et al. Obstet Gynecol. 1998; 91:108-11. Mabie WC, et al. Am J Obstet Gynecol 1992; 167:950-7 Lapinsky, et al. Int J Obstet Anesth 2015; 24:323

- If fetus is viable and at risk due to maternal hypoxia
- NOT purely to improved maternal condition

